Assessing unmet rehabilitation needs and the feasibility of a novel telerehabilitation service for patients following road trauma

Dr Christine Shiner, Angela Vratsistas-Curto, Valerie Bramah, Karon McDonell, Dr Jane Wu, A/Prof Steven Faux

St Vincent’s Hospital Sydney, NSW
Road-traffic related trauma in Australia

- Transport incidents are the second most common mechanism of trauma in Australia (~38%), after falls
- 38,945 Australian road users were hospitalised with injuries from road accidents in 2016
- Estimated annual cost of injuries alone in 2016 was >$33 billion (medical expenses, disability-related costs, loss of productivity)

Road Trauma Australia, 2017 Statistical Summary, BITRE, Canberra
Major Trauma in NSW 2016-17, NSW ITIM
The role of rehabilitation

20-30% of patients hospitalised with road-related injuries receive inpatient rehabilitation (Wu et al 2016; Dinh et al 2014)

More than 2/3rds are discharged from hospital without formal inpatient rehabilitation
The ongoing burden of trauma

- Trauma patients feel unsupported, uninformed, and unready for hospital discharge \(\text{(Goldsmith et al 2017; Kimmel et al 2016; Gabbe et al 2013)} \)

- Injuries and pain commonly incapacitate trauma survivors at home \(\text{(Goldsmith et al 2018; Rodrigue et al 2017)} \)

- 70-80\% of trauma survivors continue to report impairments, activity limitations and reduced quality of life >12 months post-injury \(\text{(Holbrook et al 1999; Gabbe et al 2012; Hours et al 2013)} \)
Room for improvement

- There may be a role for greater rehabilitation involvement in the acute trauma pathway
 - coordination of in-hospital services
 - discharge planning and management of transition home
 - community support and functional reintegration

- Service models need to be appropriate for a working age, independent and pre-morbidly high-functioning patient population
Research aims

- To identify and map unmet rehabilitation needs following hospital discharge for survivors of road-traffic related trauma

- To assess the feasibility and acceptability of delivering a rehabilitation follow-up service via telehealth, for survivors of road trauma
Study design

Longitudinal pilot cohort study

- Adult survivors of road trauma
- Admitted to hospital with injuries
- No inpatient rehabilitation

Clinical trial registration: ACTRN12618001545257
Study design

Longitudinal pilot cohort study

- Adult survivors of road trauma
- Admitted to hospital with injuries
- No inpatient rehabilitation

Clinical trial registration: ACTRN12618001545257
Study design

Longitudinal pilot cohort study

- Multidisciplinary consultation, Rehabilitation Physician and Occupational Therapist
- *Pexip* Hospital Telehealth Platform
- Smartphone, tablet or computer

Clinical trial registration: ACTRN12618001545257
Study design

Longitudinal pilot cohort study

- Hospital discharge
- Baseline assessment
- Telehealth consultation
- 1 month follow-up

• Qualitative feedback

Clinical trial registration: ACTRN12618001545257
Study design

Longitudinal pilot cohort study

- Qualitative feedback
- Outcome assessment - pain
 - mood
 - independence in activities of daily living
 - quality of life

Clinical trial registration: ACTRN12618001545257
Participant flow

n=635 screened (8 months)

n=74 eligible (11.3%)

n=34 declined to participate

n=38 recruited (53%)

n=563 ineligible

Reasons for ineligibility:

- DC from ED/not admitted n=498 88.5%
- Admission not MVA-related n=25 4.4%
- NESB n=12 2.1%
- Inpatient rehab n=12 2.1%
- No internet n=11 2.0%
- Died during admission n=2 0.4%
- Severe TBI/SCI n=2 0.4%
- Under 18 yrs n=1 0.2%
Participant demographics

38 adult road-trauma survivors

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>[range 22-89]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>43.2 ± 14.6</td>
<td></td>
</tr>
</tbody>
</table>

Sex
- 28 male (74%)
- 10 female (26%)

Pre-morbid function
- Community-dwelling (100%)
- Independently mobile (100%)
- 37 working, 1 retired
- 34 regular (≥weekly) physical activity (89%)
Mode of accident

Car driver/passenger n=3 8%
Motorbike n=10 26%
Cyclist n=15 40%
Pedestrian n=10 26%
Compensable under CTP n=27 71%
Injury profile

<table>
<thead>
<tr>
<th>Condition</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHI/TBI</td>
<td>16</td>
<td>42%</td>
</tr>
<tr>
<td>Skull/facial #</td>
<td>10</td>
<td>26%</td>
</tr>
</tbody>
</table>
Injury profile

<table>
<thead>
<tr>
<th>Injury Type</th>
<th>n</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHI/TBI</td>
<td>16</td>
<td>42%</td>
</tr>
<tr>
<td>Skull/facial #</td>
<td>10</td>
<td>26%</td>
</tr>
<tr>
<td>Vertebral #</td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td>Rib/sternum/clavicle #</td>
<td>9</td>
<td>24%</td>
</tr>
</tbody>
</table>
Injury profile

<table>
<thead>
<tr>
<th>Location</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHI/TBI</td>
<td>16</td>
<td>42%</td>
</tr>
<tr>
<td>Skull/facial #</td>
<td>10</td>
<td>26%</td>
</tr>
<tr>
<td>Vertebral #</td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td>Rib/sternum/clavicle #</td>
<td>9</td>
<td>24%</td>
</tr>
<tr>
<td>Upper limb #</td>
<td>15</td>
<td>40%</td>
</tr>
</tbody>
</table>
Injury profile

<table>
<thead>
<tr>
<th>Injury Location</th>
<th>Count (n)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHI/TBI</td>
<td>16</td>
<td>42%</td>
</tr>
<tr>
<td>Skull/facial</td>
<td>10</td>
<td>26%</td>
</tr>
<tr>
<td>Vertebral</td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td>Rib/sternum/clavicle</td>
<td>9</td>
<td>24%</td>
</tr>
<tr>
<td>Upper limb</td>
<td>15</td>
<td>40%</td>
</tr>
<tr>
<td>Lower limb</td>
<td>15</td>
<td>40%</td>
</tr>
<tr>
<td>Pelvic</td>
<td>2</td>
<td>5%</td>
</tr>
</tbody>
</table>
Injury profile

<table>
<thead>
<tr>
<th>Injury Type</th>
<th>Count (n)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHI/TBI</td>
<td>16</td>
<td>42%</td>
</tr>
<tr>
<td>Skull/facial #</td>
<td>10</td>
<td>26%</td>
</tr>
<tr>
<td>Vertebral #</td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td>Rib/sternum/clavicle #</td>
<td>9</td>
<td>24%</td>
</tr>
<tr>
<td>Upper limb #</td>
<td>15</td>
<td>40%</td>
</tr>
<tr>
<td>Lower limb #</td>
<td>15</td>
<td>40%</td>
</tr>
<tr>
<td>Pelvic #</td>
<td>2</td>
<td>5%</td>
</tr>
<tr>
<td>Peripheral nerve injury</td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td>Deep soft tissue injury</td>
<td>7</td>
<td>18%</td>
</tr>
<tr>
<td>Pneumo/haemotherax</td>
<td>5</td>
<td>13%</td>
</tr>
</tbody>
</table>
Injury profile

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital LOS</td>
<td>6.0 ± 5.3 days</td>
<td>[range 1-22]</td>
</tr>
<tr>
<td>ICU</td>
<td>4 patients (11%)</td>
<td></td>
</tr>
<tr>
<td>Acute intervention</td>
<td>27 required surgery (71%)</td>
<td>5 required multiple operations (13%)</td>
</tr>
</tbody>
</table>
Trial progress

Baseline n=38

Telehealth consult n=37

1 month follow-up n=32

3 month follow-up n=22

n=1 withdrawal

n=1 lost to FU
n=4 upcoming

n=14 upcoming
At baseline

- 36 patients (95%) reported pain: BPI Severity 3.0 ± 1.9, Interference 4.5 ± 2.8
- 33 (87%) required assistance with ADLs: Lawtons 23.3 ± 5.1
- 32 (84%) had impaired mobility
- 26 (68%) met criteria for at least mild anxiety: GAD-7 7.4 ± 4.9
- 29 (76%) met criteria for at least mild depression: PHQ-9 8.4 ± 5.2
- 4 (11%) met criteria for PTSD: PC-PTSD ≥3
Information provision in hospital

- **24 patients (63%)** reported receiving **no information or minimal information** about their injury, expected recovery, safety and/or required precautions prior to discharge.

- **19 (51%)** were **not satisfied** with the information that was provided to them prior to hospital discharge.
Information provision in hospital

- **24 patients (63%)** reported receiving **no information or minimal information** about their injury, expected recovery, safety and/or required precautions prior to discharge.

- **19 (51%)** were **not satisfied** with the information that was provided to them prior to hospital discharge.

5 patients (13%) had already **re-presented to ED**
- pain (2), wound infection, bowel perforation, ?DVT, haematoma requiring drainage

6 more (16%) had **contacted the trial team in crisis**
- pain, psychological distress, housebound, not coping at home, concerns re injury, unaware of FU, needing referrals/hospital documentation
Telehealth consultations

Conducted 13.3 ± 5.2 days post-discharge

- **37 patients (100%)** required **education**
 - safety, precautions, wound care, equipment use, exercises, pain management, recovery trajectory, follow-up processes, community access, community services, financial assistance, CTP scheme, return to work, driving, usual activities, managing mood, sleep and fatigue, nutrition

- **32 patients (86%)** had **rehabilitation needs identified,**
 - and **required a rehabilitation plan**
Unmet rehabilitation needs

- **Referral to rehabilitation services**
 - n=27 (73%)

 - Physiotherapy n=20
 - Hydrotherapy n=4
 - Occupational therapy n=4
 - Psychology n=9
 - Rehabilitation Medicine Physician n=6
 - Other medical specialist n=3

 n=1 required inpatient rehabilitation admission (15 days)
 n=2 required ambulatory/day-hospital rehabilitation
Unmet rehabilitation needs

- Equipment prescription/recommendation
 - shower stool, bath-board, over-toilet aid n=4 (11%)

- Review/revise pharmacological management
 - pain medication n=12
 - psychotropic medication n=4 n=16 (43%)

- Further diagnostic imaging n=8 (22%)

- Return to work liaison n=8 (22%)

- Assistance with CTP claim n=14 (38%)

- Ongoing assistance with follow-up, appointment bookings, care coordination n=20 (54%)
Clinical case - Mr JE

Scenario: 43 yr old male, fall from pushbike
R #NOF (ORIF) -> touch weight bearing 6 weeks
R #proximal humerus -> non-weight bearing 6 weeks
Lives multi-story terrace – access via stairs, bedroom upstairs
Wife and 2 young children

Identified: Housebound on bottom level of house (wife unable to lift down front steps)
Could not reach bedroom – sleeping on couch
Attempting to self-propel wheelchair inside using one foot
Unable to transfer to toilet unassisted (unaccompanied during the day)
Severe pain – unable to get to GP or pharmacy for analgesia
Financial concerns – non-compensable, unable to work, childcare
Relationship strain, carer stress, low mood
Clinical case - Mr JE

Actions:
- Urgent analgesia prescription/delivery
- Education re precautions, restrictions
- Counselling
- Community services, online shopping
- Ongoing phone support
- Telehealth physiotherapy -> transition to outpatient hospital physiotherapy
Clinical case - Mr GL

Scenario: 48 yr old male, struck by car while crossing road at approx. 50km/hr SAH, cerebral contusions, skull #s, # ribs 3-10 with flail segment (plated), haemothorax In hospital 13 days (6 days in ICU) Financial executive, living with wife

Identified: Severe pain – affecting mood, concentration and ADLs Marked cognitive and personality change post-TBI, lack of insight Sensory, perceptual and visual disturbances Dizziness, fatigue Significant safety risks re driving and community access No TBI follow-up arranged
Clinical case - Mr GL

Actions:

Safety education & counselling – refrain from driving, drinking, return to work
Revise analgesia
Urgent review by Rehabilitation Physician
 ➢ Admission to Day Hospital (OT, physio, neuropsychology) - ongoing therapy
 ➢ Neuropsych and formal driving assessments
 ➢ RTW liaison with employer
Ophthalmology review
Liaison with GP
Qualitative feedback (n=32)

- 91% of patients were satisfied or highly satisfied with the service
- 100% felt it was helpful
 84% very or extremely helpful
- 100% felt it was convenient
 91% very or extremely convenient
- 81% felt it was easy to use the technology
 n=2 found it difficult
- 100% felt safe using the telehealth platform
- 88% felt it directly assisted their recovery
- 100% agreed they would like to receive a similar service in future
Participant testimonials

“Convenience is a big plus. The emotional and psychological support during my recovery was very helpful.”

“I was lost when I was discharged from hospital and had no one to talk to. I got so much guidance from the team – I’m very happy, I never realised this would help me so much.”

“This service is amazing - I am very lucky. The staff always had time to help me, and I didn't have to sit around waiting for hours like when I came to hospital for appointments. This was very important to me.”
Clinical implications

- Acute medical/surgical management of injuries is done well, but limited focus on the functioning of individuals who sustain those injuries.
- **Rehabilitation expertise is needed in the acute trauma setting**

- Lessons for acute care/trauma teams - to recognise where rehab is needed.
- Lessons for rehabilitation teams – to be innovative and responsive.
- Care co-ordination and information provision are key areas for improvement.
Conclusions

- A high proportion of trauma survivors have unmet rehabilitation needs and ongoing activity limitations following hospital discharge.

- Delivering a rehabilitation follow-up service via telehealth is feasible:
 - perceived as convenient, useful, safe and beneficial by patients
 - can identify those in need of more intensive intervention & follow-up

- Rehabilitation Medicine has a role to play in improving care co-ordination for survivors of trauma, across the recovery continuum.
Acknowledgments

Funding body, the State Insurance Regulatory Authority (SIRA)

St Vincent’s Hospital Sydney

Departments of Rehabilitation & Pain Medicine
 Dr Yuriko Watanabe
 Dr Clive Sun
 Dr Patrick Arulanandam
 Dr Shari Parker

Trauma Service
 Karon McDonnel

Clinical Research Unit for Anxiety and Depression
 Dr Alison Mahoney

Physiotherapy
 Sarah Sweeney

Telehealth
 Majid Shahi

We thank all study participants

Keep up to date with our research:

@C_Shiner_
@CurtoVratsistas
@sfaux1
@SVHSydney
Outcomes at follow-up (in progress)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>1 month (n=32)</th>
<th>3 months (n=22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Require mobility aid</td>
<td>9 (28%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Require assistance with self-care</td>
<td>3 (9%)</td>
<td>2 (9%)</td>
</tr>
<tr>
<td>Ongoing pain</td>
<td>27 (84%)</td>
<td>16 (72%)</td>
</tr>
<tr>
<td>Mood disturbance</td>
<td>17 (53%)</td>
<td>10 (45%)</td>
</tr>
<tr>
<td>Return to work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full duties</td>
<td>5 (16%)</td>
<td>11 (50%)</td>
</tr>
<tr>
<td>Modified duties/reduced hours</td>
<td>10 (31%)</td>
<td>4 (18%)</td>
</tr>
<tr>
<td>Return to driving</td>
<td>13 (41%)</td>
<td>14 (64%)</td>
</tr>
</tbody>
</table>

Severity (1.9) and interference (1.7) reduced
- GAD-7 & PHQ-9 scores reduced
- Engaged with psychologist