ADULT TRAUMA CLINICAL PRACTICE GUIDELINES

Management of Hypovolaemic Shock in the Trauma Patient
Important notice!

"Management of Hypovolaemic Shock in the Trauma Patient" clinical practice guidelines are aimed at assisting clinicians in informed medical decision-making. They are not intended to replace decision-making. The authors appreciate the heterogeneity of the patient population and the signs and symptoms they may present with and the need to often modify management in light of a patient's co-morbidities.

The guidelines are intended to provide a general guide to the management of specified injuries. The guidelines are not a definitive statement on the correct procedures, rather they constitute a general guide to be followed subject to the clinicians judgement in each case.

The information provided is based on the best available information at the time of writing, which is December 2003. These guidelines will therefore be updated every five years and consider new evidence as it becomes available.

These guidelines are intended for use in adults only.

All guidelines regarding pre-hospital care should be read and considered in conjunction with NSW Ambulance Service protocols.
Algorithm 1 ::
The management of hypovolaemic shock in the trauma patient

Contents

Summary of guidelines.....................................3
How do you know when the patient is in hypovolaemic shock?3
How do you find the sources of bleeding in a hypotensive trauma patient?3
What is the best management of the bleeding patient? ..3
If fluid resuscitation is indicated, what type of fluid should be given?4
What are the endpoints of fluid resuscitation in the trauma patient?4
Algorithm 1 :: The management of hypovolaemic shock in the trauma patient

Primary survey

Includes organising the trauma team, calling the surgeon and notifying the blood bank. Also consider early call to Retrieval Services (AMRS 'formerly MRU' 1800 650 004).

- **Airway / C-spine**
 - Protect airway, secure if unstable.
 - Airway adjunct as needed.
 - Control of c-spine.
- **Breathing**
 - Definitive control of airway.
 - Oxygen.
 - Bag and mask.
- **Circulation**
 - Secure venous access x 2 large bore cannula.
 - Bloods:
 - x-match
 - FBC
 - EUC's
 - Creatinine
 - ABG's
 - Blood ETOH.
 - Control external bleeding.
- **Disability**
 - Assess neurological status.
 - AVPU:
 - alert
 - responds to vocal stimuli
 - responds to painful stimuli
 - unresponsive.
- **Exposure / Environment**
 - Undress patient.
 - Maintain temperature.
- **Adjuncts**
 - X-ray:
 - chest
 - pelvis
 - lateral c-spine.

REMEMBER – BP and HR will not identify all trauma patients who are in shock. ASSESS – History and perfusion indices – ABG’s, base deficit, lactate, Hb and HCT.

Perform Secondary Survey

- **External**
 - Careful visual inspection.
- **Long bones**
 - Careful visual inspection.
- **Chest**
 - Chest x-ray.
- **Abdomen**
 - DPA* and / or FAST**.
- **Retroperitoneum**
 - Pelvic x-ray.

Identify the source of haemorrhage

- **External**
 - Careful visual inspection.
- **Long bones**
 - Careful visual inspection.
- **Chest**
 - Chest tube.
- **Abdomen**
 - Emergency Laparotomy.
- **Retroperitoneum**
 - Externally stabilise pelvis.
 - Emergency angiogram.

Interventions

- **External**
 - Apply direct pressure.
 - Suture lacerations.
- **Long bones**
 - Splint + / - reduce #.
- **Chest**
 - Chest tube.
- **Abdomen**
 - Emergency Laparotomy.
- **Retroperitoneum**
 - Externally stabilise pelvis.
 - Emergency angiogram.

In the presence of uncontrolled haemorrhage and a delay of greater than 30 minutes to operative haemostasis, infuse small aliquots (100-200mls) of fluid to maintain systolic blood pressure between 80-90mmHg. Use caution in the elderly. Contraindicated in the unconscious patient without a palpable blood pressure. Maintain the systolic blood pressure >90mmHg for those with a traumatic brain injury.

*Diagnostic Peritoneal Aspiration (DPA): >10mls of frank blood = positive DPA.
**Focused Abdominal Sonography in Trauma (FAST): Free fluid = positive FAST.
How do you know when the patient is in hypovolaemic shock?

GUIDELINE

Blood pressure and heart rate will not identify all trauma patients who are in shock. Assessment of the trauma patient should include:

- arterial blood gases and assessment of base deficit
- haemoglobin
- lactate
- haematocrit.

These tests are only of value when interpreted in a series, therefore should be repeated.

LEVEL OF EVIDENCE

III-2

How do you find the sources of bleeding in a hypotensive trauma patient?

GUIDELINE

When the haemodynamically unstable patient enters the resuscitation room, a primary survey with full exposure takes place. Carefully inspect for external bleeding sources and examine the long bones. If x-ray facilities are available, a supine chest x-ray and pelvic x-ray should be obtained within 10 minutes of arrival. The CXR will identify any large haemothorax. If the pelvic x-ray shows a pelvic fracture, the remaining two sites of significant bleeding are the abdomen and the pelvic retroperitoneum. The options for assessing the abdomen are DPA and / or FAST.

LEVEL OF EVIDENCE

IV

What is the best management of the bleeding patient?

GUIDELINE

- Establish patent airway.
- Ensure adequate ventilation and oxygenation.
- Secure venous access – large bore cannula x 2.
- Control any external bleeding by applying direct pressure.
- Rapidly identify patients requiring operative haemostasis.
- Establish prompt contact with the major referral hospital and retrieval service.

In the presence of uncontrolled haemorrhage and a delay of greater than 30 minutes to operative haemostasis, infuse small aliquots of fluid (100-200mls) to maintain systolic blood pressure between 80-90mmHg. Use caution in the elderly. Contraindicated in unconscious patients without a palpable blood pressure and those with traumatic brain injury (see over leaf).

LEVEL OF EVIDENCE

II
Summary of guidelines

What is the best management of the bleeding patient? continued...

<table>
<thead>
<tr>
<th>GUIDELINE</th>
<th>LEVEL OF EVIDENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the presence of uncontrolled haemorrhage in the patient with a concurrent traumatic brain injury, prevention of secondary brain injury from hypotension is crucial as a systolic blood pressure <90mmHg is associated with poor outcomes. Infuse small aliquots of fluid (100-200mls) to maintain systolic blood pressure above 90mmHg.</td>
<td>I</td>
</tr>
</tbody>
</table>

If fluid resuscitation is indicated, what type of fluid should be given?

<table>
<thead>
<tr>
<th>GUIDELINE</th>
<th>LEVEL OF EVIDENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early use of blood, if available, remains the optimal resuscitation fluid for the hypovolaemic patient. Use with caution due to numerous complications.</td>
<td>Consensus</td>
</tr>
<tr>
<td>Where blood is not available or delayed, Compound Sodium Lactate (Hartmanns) is the preferred alternative for the initial resuscitation of the hypovolaemic trauma patient. Caution should be exercised in the trauma patient with liver disease.</td>
<td>II</td>
</tr>
<tr>
<td>0.9% Normal Saline is also an acceptable alternative. Large volumes, however may result in metabolic acidosis.</td>
<td></td>
</tr>
</tbody>
</table>

What are the endpoints of fluid resuscitation in the trauma patient?

<table>
<thead>
<tr>
<th>GUIDELINE</th>
<th>LEVEL OF EVIDENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional haemodynamic parameters do not adequately quantify the degree of physiological derangement in hypovolaemic trauma patients. If point of care blood gas analysis is available base deficit and lactate levels should be used to identify the magnitude of tissue oxygen debt and the adequacy of resuscitation. These tests are only of value when interpreted in a series, therefore should be repeated. A persistently high or increasing base deficit indicates the presence of ongoing blood loss or inadequate volume replacement.</td>
<td>III-2</td>
</tr>
<tr>
<td>In the absence of point of care blood gas analysis capability the restoration of a normal mentation, heart rate, skin perfusion and urine output and maintaining the systolic blood pressure at 80-90 mmHg serve as the end point of resuscitation.</td>
<td>Consensus</td>
</tr>
</tbody>
</table>